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Binomial

Binomial

A binomial random variable Y is the count of the number of successes out of n attempts
where each attempt is

independent and

has a probability of success π.

We write
Y ∼ Bin(n, π).

You should recall the following properties of a binomial distribution

Im[Y ] = {0, 1, 2, . . . , n},
E[Y ] = nπ, and

V ar[Y ] = nπ(1− π).
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Binomial Example

Binomial example
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Binomial Inference

Binomial inference

When collecting binomial data, we are interested in making statements about the probability
of success π. The most useful statement is an uncertainty interval for π. In introductory
statistics courses, we teach a confidence interval based on the Central Limit Theorem:

π̂ = y/n, π̂ ± za/2
√

π̂(1− π̂)/n.

where za/2 is the z-critical value such that the interval has (frequentist) probability of a to
contain the true value π. In this course, we will just use 2 ≈ 1.96 so that the interval has
approximately 95% (frequentist) probability.

But, nobody actually uses this formula.
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Binomial R code

Binomial uncertainty intervals
y <- 54

n <- 66

phat <- y/n

phat + c(-1, 1) * 2 * sqrt(phat * (1 - phat) / n) # Introductory statistics

[1] 0.7232304 0.9131333

binom.test(y, n)$conf.int # Exact confidence interval

[1] 0.7039345 0.9023648

attr(,"conf.level")

[1] 0.95

prop.test( y, n)$conf.int # Better approximate interval

[1] 0.7000550 0.8985865

attr(,"conf.level")

[1] 0.95

qbeta(c(.025, .975), 1/2 + y, 1/2 + n - y) # Bayesian (Jeffreys) credible interval

[1] 0.7126020 0.8965806
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Poisson

Poisson distribution

A Poisson random variable Y is the count of the number of successes where there is no clear
upper maximum. The count is typically over some time, space, or space-time. We write

Yi
ind∼ Po(λ).

where λ is the rate of occurrence and ind indicates that each observation (i) is independent.
Please remember the following properties of a Poisson distribution

Im[Yi] = {0, 1, 2, . . .},
E[Yi] = λ, and

V ar[Yi] = λ.
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Poisson Example

Jarad Niemi (STAT4610X@ISU) Introductory Statistics January 30, 2025 8 / 20



Poisson Inference

Poisson inference

When collecting Poisson data, we are interested in making statements about the rate λ. The
most useful statement is an uncertainty interval for λ. A Central Limit Theorem based interval
is

λ̂ = y =
1

n

n∑
i=1

yi, λ̂± za/2

√
λ̂/n.

But, nobody actually uses this formula.
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Poisson R code

Poisson uncertainty intervals

y <- c(5,7,8,8,6,1,5,3,3,2,2,6,1,5,6,2,5,6,5,6) # Rounds made in each game

lambdahat <- mean(y) # Mean rebounds

n <- length(y) # Total games

lambdahat + c(-1, 1) * 2 * sqrt(lambdahat / n) # CLT interval

[1] 3.640834 5.559166

exp(confint(glm(y ~ 1, family = "poisson"))) # Poisson regression style

2.5 % 97.5 %

3.722916 5.605016

qgamma(c(.025, .975), 1/2 + sum(y), n) # Bayesian (Jeffreys) credible interval

[1] 3.730696 5.613945

The interpretation is average rebounds per game.
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Poisson process

Poisson process

A Poisson process is a random variable Y is the count of the number of successes over some
amount of time, space, or space-time (T ). We write

Y
ind∼ Po(λT ).

where λ is the rate of occurrence. Please remember the following properties of a Poisson
distribution

Im[Y ] = {0, 1, 2, . . .},
E[Y ] = λT , and

V ar[Y ] = λT .
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Poisson process Example

Poisson process example
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Poisson process Inference

Poisson process inference

When collecting Poisson process data, we are interested in making statements about the rate
λ. The most useful statement is an uncertainty interval for λ. A Central Limit Theorem based
interval is

λ̂ = y/t, y/t± za/2
√
(y/t)/t.

where

y is the observed total count and

t is the observed total time (or space or space-time).
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Poisson process R code

Poisson process uncertainty intervals

y <- 92 # Number of rebounds

t <- 618 # Number of minutes played

y/t + c(-1, 1) * 2 * sqrt(y/t / t) # CLT interval

[1] 0.1178263 0.1799083

exp(confint(glm(y ~ 1, offset = log(t), family = "poisson"))) # GLM-based interval

2.5 % 97.5 %

0.1204827 0.1813921

qgamma(c(.025, .975), 1/2 + y, t) # Bayesian (Jeffreys) credible interval

[1] 0.1207345 0.1816811

These intervals are interpreted per minute played.
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Poisson process R code

Poisson process uncertainty intervals

y <- 92 # Number of rebounds

t <- 618/40 # Number of 40 minutes, i.e. full game, played

lambdahat <- y/t

lambdahat + c(-1, 1) * 2 * sqrt(lambdahat / t) # CLT interval

[1] 4.713053 7.196332

exp(confint(glm(y ~ 1, offset = log(t), family = "poisson"))) # GLM-based interval

2.5 % 97.5 %

4.819309 7.255684

qgamma(c(.025, .975), 1/2 + y, t) # Bayesian (Jeffreys) credible interval

[1] 4.829380 7.267243

These intervals are interpreted per full game played.

Jarad Niemi (STAT4610X@ISU) Introductory Statistics January 30, 2025 15 / 20



Normal

Normal

A normal random variable Y is a continuous random variable We write

Yi
ind∼ N(µ, σ2).

with mean µ and variance σ2 (or standard deviation σ). You should recall the following
properties of a normal distribution

Im[Yi] = (−∞,∞) = R,
E[Yi] = µ, and

V ar[Y ] = σ2.
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Normal Example

Normal example
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Normal Inference

Normal inference

When collecting normal data, we are (typically) interested in making statements about the
mean µ. The most useful statement is an uncertainty interval for µ. In introductory statistics
courses, we teach the confidence interval

µ̂± ta/2,n−1σ̂/
√
n

where

ta/2,n−1 is the t-critical value with n− 1 degrees of freedom,

µ̂ = y = 1
n

∑n
i=1 yi is the sample mean and

σ̂ = 1
n−1

∑n
i=1(yi − y)2 is the sample variance.

We do actually use this formula!!
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Normal R code

Normal uncertainty intervals
# Fictitious data that matches Aldritch Potgeiter's driving distance

y <- rnorm(12, mean = 0, sd = 20)

y <- y - mean(y) + 328.7

muhat <- mean(y) # sample mean

n <- length(y) # number of observations

sigmahat <- sd(y) # sample standard deviation

# All intervals are exact confidence and Bayesian credible intervals

muhat + c(-1, 1) * qt(0.975, df = n - 1) * sigmahat / sqrt(n)

[1] 317.0228 340.3772

confint(lm(y ~ 1))

2.5 % 97.5 %

(Intercept) 317.0228 340.3772

t.test(y)$conf.int

[1] 317.0228 340.3772

attr(,"conf.level")

[1] 0.95

This is the uncertainty around his mean driving distance.
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Summary

Summary

The building blocks of many statistical analyses are the following probability distributions:

Binomial (count with a known upper maximum)

Poisson (count with no known upper maximum)

Normal (not a count)

In this slide set, we introduced some uncertainty intervals for using data to make statements
about parameters in these models.
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