Introductory Statistics

Dr. Jarad Niemi

STAT 4610X - Iowa State University

January 30, 2025

Outline

- Binomial
- Poisson
- Poisson process
- Normal

Binomial

A binomial random variable \boldsymbol{Y} is the count of the number of successes out of n attempts where each attempt is

- independent and
- has a probability of success π .

We write

$$Y \sim Bin(n,\pi).$$

You should recall the following properties of a binomial distribution

- $Im[Y] = \{0, 1, 2, \dots, n\},\$
- $E[Y] = n\pi$, and
- $Var[Y] = n\pi(1 \pi).$

Binomial

Example

Binomial example

Season Totals

NAME	MIN	FGM	FGA	FTM	<u>FTA</u>	<u>3PM</u>	<u>3PA</u>	PTS	OR	DR	REB	AST	<u>T0</u>	STL	BLK
Curtis Jones G	618	127	281	54	66	54	142	362	8	84	92	48	25	29	4
Keshon Gilbert G	643	110	213	74	101	17	52	311	15	59	74	92	57	29	1
Joshua Jefferson F	567	91	172	66	84	10	34	258	35	127	162	56	35	37	12
Tamin Lipsey G	591	73	151	41	55	20	62	207	20	29	49	59	30	45	7
Milan Momcilovic F	372	55	118	14	18	31	70	155	9	44	53	12	9	5	5
Dishon Jackson c	372	59	102	66	86	0	0	184	40	60	100	10	21	14	21
Nate Heise G	382	30	69	7	11	8	33	75	13	41	54	20	13	22	3
Brandton Chatfield F	290	26	46	18	27	0	1	70	39	30	69	6	12	8	11
Nojus Indrusaitis G	76	10	28	8	14	2	13	30	0	4	4	3	4	2	0
Demarion Watson G	88	8	15	6	9	2	6	24	8	15	23	3	3	3	6
Kayden Fish F	15	1	4	1	2	0	0	3	1	2	3	0	1	0	0
JT Rock c	15	1	1	0	0	0	0	2	1	3	4	0	0	0	1
Cade Kelderman G	20	1	4	0	0	0	2	2	1	0	1	3	1	3	0
Conrad Hawley F	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total		592	1204	355	473	144	415	1683	222	527	749	312	216	197	71

Inference

Binomial inference

When collecting binomial data, we are interested in making statements about the probability of success π . The most useful statement is an uncertainty interval for π . In introductory statistics courses, we teach a confidence interval based on the Central Limit Theorem:

$$\hat{\pi} = y/n, \quad \hat{\pi} \pm z_{a/2} \sqrt{\hat{\pi}(1-\hat{\pi})/n}.$$

where $z_{a/2}$ is the z-critical value such that the interval has (frequentist) probability of a to contain the true value π . In this course, we will just use $2 \approx 1.96$ so that the interval has approximately 95% (frequentist) probability.

But, nobody actually uses this formula.

R code

Binomial uncertainty intervals

```
<- 54
V
n
   <- 66
phat <- v/n
phat + c(-1, 1) * 2 * sqrt(phat * (1 - phat) / n) # Introductory statistics
[1] 0.7232304 0.9131333
binom.test(y, n)$conf.int
                                                     # Exact confidence interval
[1] 0.7039345 0.9023648
attr(,"conf.level")
[1] 0.95
prop.test( y, n)$conf.int
                                                     # Better approximate interval
[1] 0.7000550 0.8985865
attr(,"conf.level")
[1] 0.95
gbeta(c(.025, .975), 1/2 + y, 1/2 + n - y)
                                                     # Bayesian (Jeffreys) credible interval
[1] 0.7126020 0.8965806
     Jarad Niemi (STAT4610X@ISU)
                                              Introductory Statistics
                                                                                    January 30, 2025
```

Poisson distribution

A Poisson random variable Y is the count of the number of successes where there is no clear upper maximum. The count is typically over some time, space, or space-time. We write

 $Y_i \stackrel{ind}{\sim} Po(\lambda).$

where λ is the rate of occurrence and *ind* indicates that each observation (*i*) is independent. Please remember the following properties of a Poisson distribution

- $Im[Y_i] = \{0, 1, 2, \ldots\},\$
- $E[Y_i] = \lambda$, and
- $Var[Y_i] = \lambda$.

Poisson Example

2024-25 🗸

Game Log

2024-25 Season (ISU)

DATE	OPP	RESULT	MIN	FG	FG%	3PT	3P%	FT	FT%	REB	ST	BLK	STL	PF	то	PTS
Mon 1/27	@ 🕂 ARIZ	L 86-75 OT	41	1-11	9.1	0-8	0.0	6-8	75.0	5	2	0	2	4	3	8
Sat 1/25	@ ᡟ ASU	W 76-61	40	10-22	45.5	5-10	50.0	8-10	80.0	7	1	0	3	0	2	33
Tue 1/21	vs 🖏 UCF	W 108-83	34	8-19	42.1	2-7	28.6	1-2	50.0	8	2	0	1	1	1	19
Sat 1/18	@ 🛠 wvu	L 64-57	36	8-16	50.0	1-6	16.7	1-1	100.0	8	0	0	0	3	4	18
Wed 1/15	vs 🧬 9 KU	W 74-57	36	9-17	52.9	5-6	83.3	2-2	100.0	6	1	1	2	1	4	25
Sat 1/11	© 🏆 TTU	W 85-84 OT	35	8-15	53.3	3-7	42.9	7-8	87.5	1	0	0	2	1	0	26
Tue 1/7	vs 😈 UTAH	W 82-59	32	10-17	58.8	3-7	42.9	0-0	0.0	5	6	0	2	2	0	23
Sat 1/4	vs B 25 BAY	W 74-55	28	6-13	46.2	2-5	40.0	0-0	0.0	3	2	0	4	1	2	14
Mon 12/30	COLO	W 79-69	29	5-16	31.3	2-7	28.6	8-8	100.0	3	0	0	1	2	1	20
Sun 12/22	vs 🞯 MORG	W 99-72	30	7-15	46.7	3-9	33.3	2-2	100.0	2	6	2	2	1	0	19
Sun 12/15	vs 💋 OMA	W 83-51	24	2-9	22.2	0-5	0.0	0-0	0.0	2	6	0	3	0	1	4
Thu 12/12	IOWA	W 89-80	32	8-15	53.3	5-8	62.5	2-2	100.0	6	0	0	0	1	2	23
IOWA CORN	CY-HAWK SERIES															
Sun 12/8	VS JIN JKST	W 100-58	25	6-12	50.0	5-10	50.0	2-4	50.0	1	5	0	1	2	1	19
Wed 12/4	vs 🎼 5 MARQ	W 81-70	28	6-14	42.9	2-7	28.6	0-1	0.0	5	1	0	1	1	1	14
BIG 12-BIG E	EAST BATTLE															
Wed 11/27	vs 🐢 COLO	W 99-71	26	7-14	50.0	3-9	33.3	2-2	100.0	6	3	0	1	1	0	19
THE MAULIN	IVITATIONAL PRESE	NTED BY NOVAVAX	- 5TH PL	ACE GAN	1E											
Tue 11/26	VS TO DAY	W 89-84	31	6-13	46.2	3-6	50.0	4-4	100.0	2	1	0	0	3	0	19
THE MAULIN	IVITATIONAL PRESE	NTED BY NOVAVAX														
Mon 11/25	vs 👸 4 AUB	L 83-81	29	4-11	36.4	2-6	33.3	4-4	100.0	5	3	0	1	2	0	14
THE MAULIN	VITATIONAL PRESE	NTED BY NOVAVAX														
Mon 11/18	vs 🛷 IUIN	W 87-52	27	7-14	50.0	4-10	40.0	2-3	66.7	6	1	0	0	1	2	20
Mon 11/11	vs Щ KC	W 82-56	29	7-11	63.6	3-5	60.0	3-3	100.0	5	5	0	1	0	0	20
Mon 11/4	vs 🌋 MVSU	W 83-44	26	2-7	28.6	1-4	25.0	0-2	0.0	6	3	1	2	1	1	5

Jarad Niemi (STAT4610X@ISU)

Introductory Statistics

Poisson inference

When collecting Poisson data, we are interested in making statements about the rate λ . The most useful statement is an uncertainty interval for λ . A Central Limit Theorem based interval is

$$\hat{\lambda} = \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i, \quad \hat{\lambda} \pm z_{a/2} \sqrt{\hat{\lambda}/n}.$$

But, nobody actually uses this formula.

Poisson uncertainty intervals

```
<- c(5,7,8,8,6,1,5,3,3,2,2,6,1,5,6,2,5,6,5,6) # Rounds made in each game
V
                                                       # Mean rehounds
lambdahat <- mean(v)</pre>
  <- length(v)
                                                       # Total games
n
lambdahat + c(-1, 1) * 2 * sqrt(lambdahat / n) # CLT interval
[1] 3.640834 5.559166
exp(confint(glm(y ~ 1, family = "poisson")))  # Poisson regression style
  2.5 % 97.5 %
3.722916 5.605016
qgamma(c(.025, .975), 1/2 + sum(y), n)
                                                   # Bayesian (Jeffreys) credible interval
[1] 3.730696 5.613945
```

The interpretation is average rebounds per game.

Poisson process

A Poisson process is a random variable Y is the count of the number of successes over some amount of time, space, or space-time (T). We write

 $Y \stackrel{ind}{\sim} Po(\lambda T).$

where λ is the rate of occurrence. Please remember the following properties of a Poisson distribution

- $Im[Y] = \{0, 1, 2, ...\},\$
- $E[Y] = \lambda T$, and
- $Var[Y] = \lambda T$.

Poisson process example

Season	Tot	tal	s
000000			

	_														
NAME	MIN	FGM	FGA	FTM	FTA	<u>3PM</u>	<u>3PA</u>	PTS	OR	DR	REB	AST	<u>T0</u>	STL	BLK
Curtis Jones G	618	127	281	54	66	54	142	362	8	84	92	48	25	29	4
Keshon Gilbert G	643	110	213	74	101	17	52	311	15	59	74	92	57	29	1
Joshua Jefferson F	567	91	172	66	84	10	34	258	35	127	162	56	35	37	12
Tamin Lipsey G	591	73	151	41	55	20	62	207	20	29	49	59	30	45	7
Milan Momcilovic F	372	55	118	14	18	31	70	155	9	44	53	12	9	Б	5
Dishon Jackson c	372	59	102	66	86	0	0	184	40	60	100	10	21	14	21
Nate Heise G	382	30	69	7	11	8	33	75	13	41	54	20	13	22	3
Brandton Chatfield F	290	26	46	18	27	0	1	70	39	30	69	6	12	8	11
Nojus Indrusaitis G	76	10	28	8	14	2	13	30	0	4	4	3	4	2	0
Demarion Watson G	88	8	15	6	9	2	6	24	8	15	23	3	3	3	6
Kayden Fish F	15	1	4	1	2	0	0	3	1	2	3	0	1	0	0
JT Rock c	15	1	1	0	0	0	0	2	1	3	4	0	0	0	1
Cade Kelderman G	20	1	4	0	0	0	2	2	1	0	1	3	1	3	0
Conrad Hawley F	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total		592	1204	355	473	144	415	1683	222	527	749	312	216	197	71

Poisson process inference

When collecting Poisson process data, we are interested in making statements about the rate λ . The most useful statement is an uncertainty interval for λ . A Central Limit Theorem based interval is

$$\hat{\lambda} = y/t, \quad y/t \pm z_{a/2}\sqrt{(y/t)/t}.$$

where

- y is the observed total count and
- *t* is the observed total time (or space or space-time).

R code

Poisson process uncertainty intervals

```
v <- 92 # Number of rebounds
t <- 618 # Number of minutes played
y/t + c(-1, 1) * 2 * sqrt(y/t / t)
                                                              # CLT interval
[1] 0.1178263 0.1799083
exp(confint(glm(y~1, offset = log(t), family = "poisson"))) # GLM-based interval
   2.5 % 97.5 %
0.1204827 0.1813921
qgamma(c(.025, .975), 1/2 + y, t)
                                                              # Bayesian (Jeffreys) credible interval
[1] 0.1207345 0.1816811
```

These intervals are interpreted per minute played.

Poisson process uncertainty intervals

```
y <- 92 # Number of rebounds
t <- 618/40 # Number of 40 minutes, i.e. full game, played
lambdahat <- v/t
lambdahat + c(-1, 1) * 2 * sqrt(lambdahat / t)
                                                         # CLT interval
[1] 4.713053 7.196332
exp(confint(glm(y ~ 1, offset = log(t), family = "poisson"))) # GLM-based interval
  2.5 % 97.5 %
4.819309 7.255684
ggamma(c(.025, .975), 1/2 + v, t)
                                                            # Bayesian (Jeffreys) credible interval
[1] 4.829380 7.267243
```

These intervals are interpreted per full game played.

Jarad Niemi (STAT4610X@ISU)

Normal

A normal random variable \boldsymbol{Y} is a continuous random variable We write

 $Y_i \stackrel{ind}{\sim} N(\mu, \sigma^2).$

with mean μ and variance σ^2 (or standard deviation σ). You should recall the following properties of a normal distribution

- $Im[Y_i] = (-\infty, \infty) = \mathbb{R}$,
- $E[Y_i] = \mu$, and
- $Var[Y] = \sigma^2$.

Normal example

All Players

RANK 🔨	↑↓ PLAYER	AVG	TOTAL DISTANCE	TOTAL DRIVES
1	- \star Aldrich Potgieter	328.7	3,944	12
2	↑2 ★ Gary Woodland	328.3	2,626	8
3	↑4 🔸 Keith Mitchell	322.4	3,869	12
4	↑1 × Tim Widing	321.7	1,930	6
5	↑5 ★ Alejandro Tosti	320.9	3,209	10

Inference

Normal inference

When collecting normal data, we are (typically) interested in making statements about the mean μ . The most useful statement is an uncertainty interval for μ . In introductory statistics courses, we teach the confidence interval

$$\hat{\mu} \pm t_{a/2,n-1}\hat{\sigma}/\sqrt{n}$$

where

•
$$t_{a/2,n-1}$$
 is the t-critical value with $n-1$ degrees of freedom,
• $\hat{\mu} = \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ is the sample mean and
• $\hat{\sigma} = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \overline{y})^2$ is the sample variance.

We do actually use this formula!!

Normal uncertainty intervals

```
# Fictitious data that matches Aldritch Potgeiter's driving distance
y <- rnorm(12, mean = 0, sd = 20)
y <- y - mean(y) + 328.7
muhat <- mean(y)  # sample mean
n <- length(y)  # number of observations
sigmahat <- sd(y)  # sample standard deviation
# All intervals are eract confidence and Bayasian credible intervals</pre>
```

```
# All intervals are exact confidence and Bayesian credible intervals
muhat + c(-1, 1) * qt(0.975, df = n - 1) * sigmahat / sqrt(n)
```

```
[1] 317.0228 340.3772
```

confint(lm(y ~ 1))

2.5 % 97.5 % (Intercept) 317.0228 340.3772

t.test(y)\$conf.int

```
[1] 317.0228 340.3772
attr(,"conf.level")
[1] 0.95
```

Summary

The building blocks of many statistical analyses are the following probability distributions:

- Binomial (count with a known upper maximum)
- Poisson (count with no known upper maximum)
- Normal (not a count)

In this slide set, we introduced some uncertainty intervals for using data to make statements about parameters in these models.